

Maneig Multimodal de la Sèpsia

Luis Chiscano Camón

Intensive Care Department, Vall d'Hebron University Hospital, Barcelona

Shock, Organ Dysfunction and Resuscitation Research Group. Vall d'Hebron Research Institute (VHIR) Iuissilvestre.chiscano@vallhebron.cat

Conflict of Interest

000 0 00000

0 00000

100

0000

0000

....

000

0 0

00000

0.0

.....

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic

shock 2021

Intensive Care Med (2021) 47:1181-1247 https://doi.org/10.1007/s00134-021-06506-y

Surviving Sepsis Campaign: Association Between Performance Metrics and Outcomes in a 7.5-Year Study

Results: Overall lower mortality was observed in high (29.0%) versus low (38.6%) resuscitation bundle compliance sites (p < 0.001) and between high (33.4%) and low (32.3%) management bundle compliance sites (p = 0.039). Hospital mortality rates dropped 0.7% per site for every three months (quarter) of participation (p < 0.001). Hospital and intensive care unit length of stay decreased 4% (95% CI: 1% - 7%; p = 0.012) for every 10% increase in site compliance with the resuscitation bundle.

Treatment SEPSIS – SEPTIC SHOCK

PERSONALIZED MEDICINE

Rescue Therapies

e-Table 2. Observational Studies for Refractory Shock

Demographic Characteristics					Vasopressors ^a				Mortality, No. (%) ^b	
Study	Year	Population	Total N	Sepsis (%)	Туре	Refractory Shock Threshold	Mean±SD or Median (IQR)	Mortality Threshold	Inpatient	30- day
Benbenishty et al ¹¹	2011	Unselected	72	8.3	Norepinephrine Epinephrine	0.5 0.5	3.3±7.5 3.2±10.3		39 (54)	
Brown et al ^{12c}	2013	Unselected	443	54.4	Norepinephrine equivalents	1.0				
Chou et al ¹³	2011	CRRT	279	73.5	Norepinephrine Dopamine	0.3 20			237 (85)	
Dopp-Zemel and Groeneveld ¹⁴	2013	Unselected	113	34.5	Norepinephrine Dopamine	0.9 	1.2 (0.4) 2.2 (0)			74 (66)
Dunser et al ¹⁵	2003	Unselected	48		Norepinephrine Vasopressin	<u> </u>			34 (71)	
Jenkins et al ¹⁶	2009	Unselected	64	78.1	Norepinephrine Epinephrine	100 mcg/min 100 mcg/min	 120 mcg/min		60 (94)	
Kastrup et al ¹⁷	2013	Unselected	1,543	57.4	Norepinephrine Epinephrine		0.5±0.8 0.6±1.9	294.3 mcg/kg 70.4 mcg/kg	275 (18)	
Katsaragakis et al ¹⁸	2006	Surgical	12		Norepinephrine	4	4.1-9 ^d		8 (67)	
Luckner et al ¹⁹	2005	Unselected	316	32.6	Norepinephrine Epinephrine Vasopressin	0.3 0.3 	1.1±1.3 0.2±0.2	0.5	161 (51)	
Luckner et al ²⁰	2007	Unselected	78	46.2	Norepinephrine Epinephrine Vasopressin	0.3 0.3 	1.1±1.1 0.1±0.05 			44 (56)
Sviri et al ²¹	2014	Unselected	166	<u> </u>	Norepinephrine Epinephrine	40 mcg/min 40 mcg/min			124 (75)	

Abbreviations: IQR, interquartile range; SD, standard deviation.

^a All doses presented as mcg/kg/min unless specified.

^b Mortality refers to the entire cohort rather than individual subgroups.

^c Only 90-day mortality available.

^dRange.

Jentzer JC et al. Chest. 2018 Aug;154(2):416-426

Precision medicine strategi	es	Target (s)	Clinical application	
	Genomics and epigenomics	Genetic variants	Prognosis, severity	
		Genotypes	Susceptibility to sepsis	1 2022
	Transcriptomics	Gene expression, activity and regulation	Susceptibility to sepsis	1 2023
Omics technologies		Sepsis response signatures	Severity, prognosis	
Offices technologies	Metabolomics	Small molecules produced by cells	Prognosis	Andrew III and the
		Metabolomic profile	Response to treatment	Annual Update
	Proteomics	Proteins expressed by the genome under	Diagnosis, Prognosis	in Intensive Care
		certain conditions		In Intensive cure
		Biomarkers	Diagnosis, prognosis	and Emergency
Immunoglobulins		Immunoglobulin levels	Sepsis-associated	Medicine 2023
			hypogammaglobulinemia	medicine 2025
	High Endotoxinemia	Endotoxinemia	Rescue therapy	
	Severe Hypercytokinemia	Cytokine levels	Rescue therapy	
Hemoadsorption				Precision Medicine in Septic Shock
	Sequential Hemoadsorption	Endotoxin and Cytokine hemoadsorption	Rescue therapy	
				L. Chiscano-Camón, J. C. Ruiz-Rodriguez, and R. Ferrer
Immunotherapy		Hyperinflammation vs immunoparalysis	Immunomodulatory therapies	
		Secondary infections and complications		
		Macrophage activation-like syndrome		
		HLA-DR/CD14 expression vs hiperferritinemia		
		Vasonressin Selenressin Terlinressin	Catecholamine sparing agent	
Non-catecholaminergic va	sonressors	Methylene blue, Angiotensin II	cateenolamine sparing agent	
Non catecholannergie va	5061035013	Methylene blue, Anglotensin in	Rescue therapy	
Low-Perfusion phenotine		Patients with sentic cardiomyopathy	FCMO	
- tow i cirusion prichotipe				
				SOC MC

00 00-00000000000000000000000

....

............

0000 00000

....

0000

0 00

0000 000 000000000

.......................

..

0 0 0

....................

0 0 00 0

000000

...........

0

0

2023

Precision Medicine in Septic Shock

Genomics and epigenomics	Genetic variants	Prognosis, severity	
	Genotypes	Susceptibility to sepsis	
Transcriptomics	Gene expression, activity and regulation	Susceptibility to sepsis	
	Sepsis response signatures	Severity, prognosis	
Metabolomics	Small molecules produced by cells	Prognosis	
	Metabolomic profile	Response to treatment	
Proteomics	Proteins expressed by the genome under certain conditions	Diagnosis, Prognosis	

RESEARCH ARTICLE

Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock

Adolfo Ruiz-Sanmartín^{1,2,3}, Vicent Ribas⁴, David Suñol⁶, Luis Chiscano-Camón^{1,2,3}, Clara Palmada^{1,2}, Iván Bajaña^{1,2}, Nieves Larrosa^{5,6,7}, Juan José González^{5,6,7}, Núria Canela⁸, Ricard Ferrer^{1,2,3}, Juan Carlos Ruiz-Rodríguez^{5,3,*} VALIDATION OF A GENE EXPRESSION-BASED SUBCLASSIFICATION STRATEGY FOR PEDIATRIC SEPTIC SHOCK Crit Care Med. 2011 November ; 39(11): 2511–2517. doi:10.1097/CCM.0b013e3182257675.

Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality British Journal of Anaesthesia, 121 (5): 1065–1074 (2018)

doi: 10.1016/j.bja.2018.05.072

Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach SCIENTIFIC REPORTS [6:20391 [DOI: 10.1038/srep2039]

Prospective, observational and single-center

Met the criteria for sepsis

Nine proteins (GPX3, APOB, ORM1, SERPINF1, LYZ, C8A, CD14, APOC3 and C1QC) were associated with organ dysfunction (SOFA > 6) with an accuracy of 0.82 ± 0.06 , precision of 0.85 ± 0.093 , sensitivity $0.81 \pm$ 0.10, specificity 0.84 ± 0.10 and AUC 0.82 ± 0.06 .

Fig 2. Shap values graphics. A) blue = proteins expressed in patients with SOFA \leq 6, red = proteins expressed in patients with SOFA > 6. B) blue = proteins expressed in patients survivors, red = proteins expressed in patients non-survivors.

00000

00000

Cell Reports Medicine

Toward personalized immunotherapy in sepsis: The **PROVIDE** randomized clinical trial

Crit Care Med. 2016 February ; 44(2): 275-281. doi:10.1097/CCM.00000000001402.

Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Re-analysis of a prior Phase III trial

Article

Precision Immunotherapy for Sepsis

REVIEW published: 05 September 2018 doi: 10.3389/fimmu.2018.01926

TABLE 1 | Examples of immunotherapy in sepsis. Annemieke M. Peters van Ton¹, Matthijs Kox^{1,2}, Wilson F. Abdo¹ and Peter Pickkers^{1,2*}

TNFα, tumor necrosis factor alpha; IL1RA, Interleukin-1 receptor antagonist; IL-1, interleukin-1; GM-CSF, granulocyte-macrophage colony stimulating factor; IFN_γ, interferon gamma IL-7, interleukin-7; anti-PD-L1, programmed death-1 ligand antagonist; OR, odds ratio.

Societat Catalana de Medicina Intensiva i Crítica

Jonathan Cohen 1

0.0

00 000 00 0000 00

0 0

PMID: 12490963 DOI: 10.1038/nature01326

00000

00000

00000

00000 00

00000 0000 0 00

000

. . ..

00 000 0 00000

0 00000

....

0 0

0 0000 00000

00000

000

000

0.0

0 00000

00 00000 0 0000

0000 00 000

0.0

000

....

....

0.0

0000

Sepsis – Pathophysiology and Therapeutic Concepts

Blood Purification Studies in the ICU: What Endpoints Should We Use? Critical Care Nephrology

00000

Dominik Jarczak, Stefan Kluge and Axel Nierhaus*

...

REVIEW published: 14 May 2021 doi: 10.3389/fmed.2021.628302

0000 0

0.0

0.0

000 0 00000

00000

0000

000

000

0 0

00000

00000

Lui G. Forni^{a, b, c} Blood Purification

0000

00000

Blood Purif DOI: 10.1159/000523761

REVIEW

66 6566

00000

Open Access

Check for updates Honore et al. Ann. Intensive Care (2019) 9:56 https://doi.org/10.1186/s13613-019-0530-y

Societat Catalana de

Medicina Intensiva i Crítica

O Annals of Intensive Care

Patrick M. Honore^{1*}, Eric Hoste², Zsolt Molnár³, Rita Jacobs⁴, Olivier Joannes-Boyau⁵, Manu L. N. G. Malbrain^{4,6} and Lui G. Forni^{7,8}

Cytokine removal in human septic shock:

Where are we and where are we going?

000

00000

O Annals of Intensive Care

Patrick M. Honore^{1*}, Eric Hoste², Zsolt Molnár³, Rita Jacobs⁴, Olivier Joannes-Boyau⁵, Manu L. N. G. Malbrain^{4,6} and Lui G. Forni^{7,8}

Cytokine removal in human septic shock:

Where are we and where are we going?

Which patient would **benefit** the most from cytokine removal?

When to start cytokine removal therapy in sepsis?

How long should cytokine removal therapy last and how long should it be continued?

Which patient **population** should be studied in the future?

What **severity score** of sepsis would be the most appropriate to include in a study looking at cytokine removal therapy in patients with sepsis?

Which **biomarker** should be the most appropriate to include in a study looking at cytokine removal therapy in patients with septic shock?

REVIEW

....

000 00 0000 00

.....

00000

00000 0000 0 00

00000 00

Open Access

Rationale for sequential extracorporeal therapy (SET) in sepsis

Claudio Ronco^{1,2*}, Lakhmir Chawla³, Faeq Husain-Syed^{4,5} and John A. Kellum^{6,7}

Device name (manufacturer)	Sorbent type	Intended use	Toxins/mediators removed
Seraph 100 Microbind Affinity Blood Filter (ExThera Medical) ^a	Polyethylene beads with end-point- attached heparin	Septic shock	Bloodstream pathogens, drugs
Toraymyxin (Estor; Toray) ^a	Polymyxin B covalently bound to polypropylene-polystyrene fibre	Septic shock	Endotoxin
Cytosorb (Cytosorbents) ^a	Crosslinked Divinylbenzene/polyvi- nylpyrrolidone copolymers	Septic shock, vasoplegic shock (e.g. post-cardiac surgery, extracorporeal membrane oxygenation), liver failure, rhabdomyolysis, intoxication, drug accumulation	Cytokines, myoglobin, free haemo- globin, bilirubin/bile acids, toxins, metals, drugs
HA330/380 (Jafron Biomedical) ^o	Polystyrene divinylbenzene copolymer resins	Sepsis, trauma, burns, liver failure, rhabdomyolysis, intoxication, drug accumulation	Cytokines, myoglobin, free haemo- globin, bilirubin/bile acids, toxins, metals, drugs
oXiris (Baxter) ^c	AN69 with PEI surface treatment; endotoxin adsorbed by means of ionic interactions at the membrane surface	AKI, sepsis	Uremic toxins, endotoxin, cytokines
SepXiris (Baxter) ^d	AN69-ST copolymer membrane	AKI, sepsis	Uremic toxins, cytokines
Haemofeel CH (Toray) ^e	PMMA membrane	AKI, sepsis	Uremic toxins, cytokines

....

0 0

.

00000

000

000

0.0

0 00000

.......

0000

0000

.....

0000 00 000

.....

000

Table 1 Selection of currently available extracorporeal blood purification devices

... ..

0.0

. .

00 000 0 00000

0 00000

Clinical Trial > J Artif Organs. 2017 Sep;20(3):252-259. doi: 10.1007/s10047-017-0967-4. Epub 2017 Jun 6.

Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study

Noradrenaline

Sigrun Friesecke ¹, Stephanie-Susanne Stecher ², Stefan Gross ³, Stephan B Felix ², Axel Nierhaus ⁴

PMID: 28589286 DOI: 10.1007/s10047-017-0967-4

00

0000

00000

0.0

00000

Societat Catalana de

Medicina Intensiva i Crítica

> World J Crit Care Med. 2021 Jan 9;10(1):22-34. doi: 10.5492/wjccm.v10.i1.22.

Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device (CytoSorb [®]) in patients with sepsis and septic shock

Rajib Paul ¹, Prachee Sathe ², Senthil Kumar ³, Shiva Prasad ⁴, Ma Aleem ⁵, Prashant Sakhalvalkar ²

PMID: 33505870 PMCID: PMC7805252 DOI: 10.5492/wjccm.v10.i1.22

45 patients with septic shock, a significant vasopressor dose reduction was observed in patients treated with cytokine hemoadsorption. Norepinephrine was reduced by 51.4%, epinephrine by 69.4%, and vasopressin by 13.9%. Also, a reduction in IL-6 levels by 52.3% and lactate levels by 39.4% was observed in the survivors. A survival rate of 75% was documented in patients who received treatment within 24 hours of intensive care unit (ICU) admission. Sixty-eight percent of patients who received treatment within 24-48 h after ICU admission survived.

> Crit Care. 2019 Sep 18;23(1):317. doi: 10.1186/s13054-019-2588-1.

Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensityscore-weighted retrospective study

Willem Pieter Brouwer ^{1 2}, Servet Duran ³, Martijn Kuijper ⁴, Can Ince ⁵

PMID: 31533846 PMCID: PMC6749645 DOI: 10.1186/s13054-019-2588-1

CytoSorb was associated with a decreased observed versus expected 28-day all-cause mortality.

At the start of therapy, CytoSorb-treated patients had higher lactate levels (p < 0.001), lower mean arterial pressure (p = 0.007) and higher levels of noradrenaline (p < 0.001) compared to the CRRT group.

 Randomized Controlled Trial
 > J Crit Care. 2019 Feb;49:172-178. doi: 10.1016/j.jcrc.2018.11.003.

 Epub 2018 Nov 10.

Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study

Fatime Hawchar ¹, Ildikó László ², Nándor Öveges ³, Domonkos Trásy ⁴, Zoltán Ondrik ⁵, Zsolt Molnar ⁶

00000

00000

0000 0

0.0

00000

00000

000

000

.

PMID: 30448517 DOI: 10.1016/j.jcrc.2018.11.003

00

Significant effects on norepinephrine requirements, PCT and Big-endothelin-1 concentrations compared to controls

Biomedicines. 2020 Dec; 8(12): 539. Published online 2020 Nov 26. doi: <u>10.3390/biomedicines8120539</u>

Hemoadsorption with CytoSorb in Septic Shock Reduces Catecholamine Requirements and In-Hospital Mortality: A Single-Center Retrospective 'Genetic' Matched Analysis

Christopher Rugg, Riko Klose, Rouven Hornung, Nicole Innerhofer, Mirjam Bachler, Stefan Schmid, Dietmar Fries, and Mathias Ströhle*

In a case-control study of septic shock patients who received cytokine hemoadsorption with CytoSorb[®], the median catecholamine requirements approximately halved within 24 hours after the initiation of therapy. In-hospital mortality was significantly lower in the CytoSorb[®] group (35.7% vs 61.9%; p = 0.015).

Clinical Trial > Blood Purif. 2020;49(1-2):107-113. doi: 10.1159/000502540. Epub 2019 Aug 21.

Changes in Cytokines, Haemodynamics and Microcirculation in Patients with Sepsis/Septic Shock Undergoing Continuous Renal Replacement Therapy and Blood Purification with CytoSorb

Samuele Zuccari ¹, Elisa Damiani ¹, Roberta Domizi ¹, Claudia Scorcella ¹, Mario D'Arezzo ², Andrea Carsetti ¹, Simona Pantanetti ¹, Sara Vannicola ¹, Erika Casarotta ¹, Andrea Ranghino ², Abele Donati ³, Erica Adrario ¹

00000

.....

PMID: 31434083 DOI: 10.1159/000502540

Nine patients; plasma levels of IL-8 decreased at 24 h (p < 0.05 versus 6 h); no significant variation was found for other cytokines. Haemodynamic parameters and vasopresor requirement remaind substantially stable during 24-h treatment; nonetheless an increase in sublingual microcirculatory density was observed and microvascular flow quality tended to improve over time.

	Baseline	6 h	24 h	p value*
Total small vessel density, mm/mm ²	14.9 (13.9 to 16.9)	17 (16 to 18.7)	17.9 (15.3 to 20)#	0.015
Perfused small vessel density, mm/mm ²	13.9 (13.3 to 16.4)	15.7 (15 to 17.3)#	17 (14.8 to 18.6)##	0.003
MFI, AU	2.50 (2.37 to 2.62)	2.67 (2.62 to 2.75)	2.83 (2.58 to 3.00)	0.046
Percentage of perfused small vessels	89 (86 to 92)	92 (91 to 93)	93 (92 to 94)	0.048
StO ₂ , %	83 (74 to 91)	87 (82 to 90)	85 (83 to 88)	0.528
StO2 downslope, %/min	-6 (-10.8 to -5.3)	-7.7 (-10.4 to -3.3)	-9 (-13.9 to -7.5)	0.442
StO2 upslope, %/min	153 (106 to 186)	164 (118 to 253)	144 (58 to 194)	0.654
Area of hyperemia, % * min	13.8 (5.3 to 15.2)	10.7 (5.1 to 17.8)	10.6 (6.7 to 18.4)	0.764
Tissue haemoglobin index, AU	10.6 (6.5 to 16.7)	12.9 (9.8 to 18.4)	11.1 (9.1 to 13.7)	0.236

000

00000

0000

000

00000

Table 2. Sublingual microcirculation and NIRS-derived variables

....

0

0 0 0 0 0

0 0 0 0

000000

	IL-6 plasmatic concentration
Kobe 2007	23300 (26500) pg/ml.
Schadler 2017	Treatment group: [162–874] pg/ml
	Control group: 590 [125–2147] pg/ml.
Friesecke 2017	25523 (1052 - 491260) pg/ml.
Schittek 2020	Treatment group: 5000 (939 – 5000) pg / ml.
	Control group: not measured
Mehta 2020	1962.04 (229.09) pg/ml.
Garcia 2021	HA group: 23897 (23179) pg/ml
	Non-HA group: 26543 (21373)
Scharf 2021	Cytosorb [®] treatment: 60529 (10108 – 84000000)
	No-Cytosorb [®] : 25660 (10051 – 600000)
Paul 2021	889.15 (1307.43) pg/ml
Hawchar 2022	4240 (0->10 ⁷) pg/ml

 00000
 0000
 00
 00000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 0000

Review > Blood Purif. 2014;37 Suppl 1:5-8. doi: 10.1159/000356831. Epub 2014 Jan 20.

Endotoxin removal: history of a mission

Claudio Ronco¹

Diagnostic and Prognostic Implications of Endotoxemia in Critical Illness: Results of the MEDIC Study

John C. Marshall,¹ Debra Foster,⁴ Jean-Louis Vincent,⁶ Deborah J. Cook,⁵ Jonathan Cohen,¹¹ R. Phillip Dellinger,^{9,a} Steven Opal,⁷ Edward Abraham,⁸ Stephen J. Brett,¹⁰ Terry Smith,² Sangeeta Mehta,³ Anastasia Derzko,⁴ and Alex Romaschin^{1,4} ...hemodynamic instability, multiple organ failure, and death...

...correlation between plasma endotoxin concentrations and severity of septic shock, organ dysfunction, and mortality...

Early Use of Polymyxin B Hemoperfusion in Abdominal Septic Shock The EUPHAS Randomized Controlled Trial

Design, Setting, and Patients A prospective, multicenter, randomized controlled trial (Early Use of Polymyxin B Hemoperfusion in Abdominal Sepsis [EUPHAS]) conducted at 10 Italian tertiary care intensive care units between December 2004 and December 2007. Sixty-four patients were enrolled with severe sepsis or septic shock who underwent emergency surgery for intra-abdominal infection.

Intervention Patients were randomized to either conventional therapy (n=30) or conventional therapy plus 2 sessions of polymyxin B hemoperfusion (n=34).

A *significant decrease in 28-day mortality* was noted in the intervention group (32%) compared to the standard treatment group (53%)

Polymyx	in B Hemoperfusion		Conv	Conventional Therapy			
Mean (9	95% CI)	1	Mean (9	95% CI)			
Baseline (n = 34)	72 Hours (n = 34)	<i>P</i> Value	Baseline (n = 30)	72 Hours (n = 27)	P Value		
76 (72-80)	84 (80-88)	.001	74 (70-78)	77 (72-82)	.37		
29.9 (20.4-39.4)	6.8 (2.9-10.7)	<.001	28.6 (16.6-40.7)	22.4 (9.3-35.5)	.14		
4.3 (2.7-5.9)	0.9 (0.3-1.5)	<.001	4.1 (2.3-6.0)	3.3 (1.3-5.3)	.26		
235 (206-265)	264 (236-292)	.049	217 (188-247)	228 (199-258)	.79		
13 (38)	15 (44)	.50	6 (20)	8 (30)	.50		
	Polymyx Mean (9 Baseline (n = 34) 76 (72-80) 29.9 (20.4-39.4) 4.3 (2.7-5.9) 235 (206-265) 13 (38)	Polymyxin B Hemoperfusion Mean (95% Cl) Baseline (n = 34) 72 Hours (n = 34) 76 (72-80) 84 (80-88) 29.9 (20.4-39.4) 6.8 (2.9-10.7) 4.3 (2.7-5.9) 0.9 (0.3-1.5) 235 (206-265) 264 (236-292) 13 (38) 15 (44)	Polymyxin B Hemoperfusion Mean (95% Cl) Baseline (n = 34) 72 Hours (n = 34) P Value 76 (72-80) 84 (80-88) .001 29.9 (20.4-39.4) 6.8 (2.9-10.7) <.001	Polymyxin B HemoperfusionConvMean (95% Cl)Mean (95% Cl)Baseline (n = 34) 72 Hours (n = 34) P ValueBaseline (n = 30)76 (72-80)84 (80-88).00174 (70-78)29.9 (20.4-39.4)6.8 (2.9-10.7)<.001	Conventional TherapyMean (95% Cl)Mean (95% Cl)Baseline (n = 34) 72 Hours (n = 34) P ValueBaseline (n = 30) 72 Hours (n = 27)76 (72-80)84 (80-88).00174 (70-78)77 (72-82)29.9 (20.4-39.4)6.8 (2.9-10.7)<.001		

Abbreviations: Cl, confidence interval; FIO2, fraction of inspired oxygen.

0 0 00 0

^aSee "Methods" section for formulas for inotropic score and vasopressor dependency index. In the conventional therapy group, 3 patients died before 72 hours (n=2

Medicina Intensiva i Crítica

Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial

Intensive Care Med (2015) 41:975–984 DOI 10.1007/s00134-015-3751-z

243 patients with septic shock within 12 h after emergency surgical treatment for secondary peritonitis due to organ perforation.

Patients receiving hemoperfusion with PMX (119 patients) received **conventional therapy plus two** sessions of PMX hemoperfusion.

There were no significant differences in the SOFA score or the 28-day mortality rate between the PMX and control groups (27.7% vs. 19.5%).

The severity of disease and mortality rates were **low** in the study population.

Among the 220 sessions performed, **early interruption** was observed in 25 cases (11 %), mostly during the first session and mainly due to circuit coagulation.

The two PMX hemoperfusion sessions were achieved in only 81 of 119 patients (69.8%).

Of note, plasma EAA levels were not measured.

Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level The EUPHRATES Randomized Clinical Trial

R. Phillip Dellinger, MD, MSc; Sean M. Bagshaw, MD, MSc; Massimo Antonelli, MD; Debra M. Foster, BSc; David J. Klein, MD, MBA; John C. Marshall, MD; Paul M. Palevsky, MD; Lawrence S. Weisberg, MD; Christa A. Schorr, DNP, MSN, RN; Stephen Trzeciak, MD, MPH; Paul M. Walker, MD, PhD; for the EUPHRATES Trial Investigators

ORIGINAL

Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial

D. J. Klein^{1*}, D. Foster², P. M. Walker², S. M. Bagshaw³, H. Mekonnen⁴ and M. Antonelli⁵

post hoc study of 194 of the patients with EAA values between <u>0.6-0.89</u> and observed an improvement in survival in patients who received therapy with PMX

Intensive Care Med (2018) 44:2205–2212 https://doi.org/10.1007/s00134-018-5463-7

NARRATIVE REVIEW

...

00000

00000

0000 0 00

00000 00

Intensive Care Med (2022) 48:1397–1408 https://doi.org/10.1007/s00134-022-06810-1

Hemoperfusion in the intensive care unit

Zaccaria Ricci^{1,2*}, Stefano Romagnoli^{2,3}, Thiago Reis^{4,5,6}, Rinaldo Bellomo^{7,8} and Claudio Ronco⁹

000 0 00000

0 00000

0000

000

00 000

0 0

0000 00000

0.0

.....

000

000

00000

initial randomized controlled trials should different assess primary endpoints rather than mortality to also assess other important effects of extracorporeal blood purification such as ventilation-free days, therapyvasopressor d<u>ays,</u> invasive free organ support-free days or intensive care unitfree days ..."

000 00

0.0

. .

............

0 00000

....

.....

.

00000 00

000

0 00000

....

....

0000 00

0000

0000 00 000

000

....

0 5 80

..................

....

00000

00000

00000

00000 00

00000 0000 0 00

"... Due the to critical importance of optimal antimicrobial treatment in sepsis, it seems crucial to understand and compensate for such extracorporeal loss during ..."

Mechanistic Considerations and Pharmacokinetic Implications on Concomitant Drug Administration During CytoSorb Therapy

00000

00000

8000 0

0.0

. . .

0 00000

00000

0000

000

Critical Care Explorations

May 2022 • Volume 4 • Number 5

DOI: 10.1097/CCE.00000000000688

Insignificant In Vivo Removal	Low In Vitro Removal	Moderate or Hig Remova	jh In Vitro al	Significant In Vivo Removal					
Negligible clearance increase (<25%) or low percentage removal (<30%)	<30% percentage removal but no in vivo data available	>30% percentage no in vivo data avail	removal but able	>25% clearance increase or >30% percentage removal					
General view on clinically expected drug removal per category, based on available data									
Unlikely to be removed to a clinically significant extent with CytoSorb therapy	Clinically significant removal by CytoSorb therapy cannot be excluded, and dose adjustments may be warranted. TDM is recommended to guide dosing wherever available	CytoSorb therapy possibly results in clinically significant removal, and dose adjustments may be warranted. TDM is recommended to guide dosing wherever available	Clinically sig or is to be e adjustments to guide do	gnificant removal has been demonstrated expected with CytoSorb therapy, and dose s likely are warranted. TDM is recommended sing wherever availablex					

000

0.0

Pharmacokinetics of anti-infective agents during CytoSorb Scientific Rep hemoadsorption

Scientific Reports | (2021) 11:10493 | https://doi.org/10.1038/s41598-021-89965-z

Mechanistic Considerations and Pharmacokinetic Implications on Concomitant Drug Administration During CytoSorb Therapy

Critical Care Explorations

......

00 000 00 0000 00

0 0

.....

.....

00000

00000

00000 00

00000 0000 0 00

000 00

0.0

10

........

0 00000

00 000 0 00000

......

0 0

0 0000 00000

00000 00

000

0 00000

....

0000 00 000

......

000

May 2022 • Volume 4 • Number 5

DOI: 10.1097/CCE.00000000000688

"... Clinical decision-making regarding adjustments in drug dosing should always be made in the broader clinical context, supported by therapeutic drug monitoring when available ..."

Insignificant In V Removal	ivo	Low In Vitro Removal	Moderate or Hi Remov	gh In Vitro al	Signif	icant In V	'ivo Remov	al
Clindamycin (7, 15, 16)	А, Н		Cyclosporine (8, 9)	L	Linezolid (7, 17)	A, H		115
Flucloxacillin (7, 13)	I, A		Dabigatran (18)	L	Posaconazole (7)	А		32
Ganciclovir (7)	Α		Diazepam (9)	L	Teicoplanin (7, 8, 19)	I, A, H		31
Meropenem (7, 13, 15, 17, 28)	I, A, H		Digoxin (8, 9)	VL	Tobramycinª (7, 8)	I, A		
Metronidazole (7)	A	2	Edoxaban (20)	L	Vancomycin (8, 10, 13, 19, 21)	I, H	>60	
Piperacillin (7, 13, 15)	I, A, H		Gentamycin (8, 13)	S	Apixaban (22)	н		
			lodixanol (23)	S				
			Ibuprofen (9)	S				
			Phenobarbital (8)	S				
			Phenytoin (8)	S				
	_		Quetiapine (9)	VL				
Anidulafungin (7)	A	Amikacin (8)	Amiodarone (9)	VL	Amphotericin B (11)	Α		75
Cefepime (7)	А	Paracetamol (9)	Amitriptyline (9)	VL	Bivalirudin (15)	н	>60	
Ceftriaxone (7)	Α	(Acetaminophen)	Amlodipine (11)	VL	Digitoxin (12)	н	>60	
Ciprofloxacin (7, 13)	I, A	Theophylline (8)			Flecainide (14)	Н	>60	
Clarithromycin (7)	А		Carbamazepine (8)	L	Fluconazole	I, A		282

....

....

.........

0000

00000

0.0

Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock

Polyclonal IVIG versus placebo or no intervention or sepsis, severe sepsis and septic shock Patient or population: adult patients with sepsis, severe sepsis and septic shock Intervention: polyclonal IVIG Significant reductions in Comparison: placebo or no intervention Illustrative comparative risks* (95% CI) Relative effect No of Partici-Quality of the Outcomes mortality in adults with (95% CI) pants evidence (studies) (GRADE) **Corresponding risk** Assumed risk sepsis compared to placebo Polyclonal IVIG Placebo or no intervention or no intervention (relative All-cause mortality, adults, standard Study population RR 0.81 1430 00000 polyclonal IVIG (0.7 to 0.93) (10 studies) moderate¹ 365 per 1000 296 per 1000 (RR) risk 0.81; 95% (256 to 340) Moderate confidence interval (CI) 0.70 423 per 1000 343 per 1000 to 0.93 and RR 0.66; 95% CI (296 to 393) All-cause mortality, adults, IgM-en-Study population RR 0.66 528 00000 0.51 to 0.85, respectively). riched polyclonal IVIG (0.51 to 0.85) (7 studies) moderate² 375 per 1000 247 per 1000 (191 to 318) Moderate 272 per 1000 412 per 1000 (210 to 350) Societat Catalana de 000 00 0000 00 00000 8060 0 0.0 000 0 00000 0000 000 00000 00 01

00000

000

0.0

Medicina Intensiva i Crítica

RESEARCH

....

00000

00000

00000

00000 00

00000 0000 0 00

... .. .

00 000 00 0000 00

Open Access

Check for updates

The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis

... ..

0.0

0 0

............

0 00000

Cui et al. Ann. Intensive Care (2019) 9:27 https://doi.org/10.1186/s13613-019-0501-3

Pooled analyses showed that the use of IVIgGM reduced the mortality risk of septic patients (relative risk 0.60; 95% confidence interval [CI] 0.52–0.69, *I*2 = 0%).

	IVIgG	М	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Behre et al. 1995	9	30	10	22	3.5%	0.66 [0.32, 1.35]	
Brunne et al 2013	5	19	6	19	1.8%	0.83 [0.31, 2.27]	
Buda et al 2005	5	22	16	44	3.3%	0.63 [0.26, 1.48]	
Cavazzuti et al 2014	23	92	35	76	11.7%	0.54 [0.35, 0.83]	
Giamarellos-Bourboulis et al 2016	39	100	58	100	17.8%	0.67 [0.50, 0.90]	
Hentrich et al. 2006	27	103	29	103	8.9%	0.93 [0.60, 1.46]	-
Just et al 1986	6	13	9	16	2.5%	0.82 [0.40, 1.70]	
Karatzas et al. 2002	8	34	14	34	4.3%	0.57 [0.28, 1.18]	
Reith et al. 2001	7	35	16	32	5.1%	0.40 [0.19, 0.84]	
Rodriguez et al. 2001	1	20	5	17	1.7%	0.17 [0.02, 1.32]	
Rodriguez et al. 2005	8	29	13	27	4.1%	0.57 [0.28, 1.16]	
Schedel et al. 1991	1	27	9	28	2.7%	0.12 [0.02, 0.85]	
Spannbrucker et al. 1987	4	25	7	25	2.1%	0.57 [0.19, 1.71]	
Toth et al. 2013	4	16	5	17	1.5%	0.85 [0.28, 2.61]	
Tugrul et al. 2002	5	21	7	21	2.1%	0.71 [0.27, 1.89]	
Vogel et al 1988	6	25	11	25	3.4%	0.55 [0.24, 1.25]	
Welte 2018	18	81	22	79	6.8%	0.80 [0.46, 1.37]	
Wesoly et al. 1990	8	18	13	17	4.1%	0.58 [0.33, 1.04]	
Yavuz et al 2012	14	56	43	62	12.5%	0.36 [0.22, 0.58]	
Total (95% CI)		766		764	100.0%	0.60 [0.52, 0.69]	♦
Total events	198		328				
Heterogeneity: Chi ² = 16.80, df = 18	(P = 0.54)	; I ² = 0	%				
Test for overall effect: Z = 6.94 (P <	0.00001)						Eavours MaGM Eavours control
Fig. 2 Forest plot showing the over	all effect (of IVIg0	5M on m	ortality	in adults	with sepsis	

....

0.0

.

00000 00

000

0 00000

............

0000 00000 00 01

0000

0000

0000 00 000

000

RESEARCH

Open Access

Cui et al. Ann. Intensive Care (2019) 9:27 https://doi.org/10.1186/s13613-019-0501-3

The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis

Table 3 Summary of findings table

Patient or population: patients with Sepsis or septic shock

Settings: Intensive care medicine

Intervention: IVIgGM

Comparison: Control

Outcomes	Illustrative compar	ative risks* (95% CI)	Relative effect	No	Quality
	Assumed risk	Corresponding risk	(95% CI)	of Participants(studies)	of the evidence(GRADE)
	Control	IVIgGM			
New Outcome	Study population		RR 0.60 (0.52 to 0.69)	1530	$\oplus \oplus \Theta \Theta$
Follow-up: 12-70 days	429 per 1000	258 per 1000 (223 to 296)		(19 studies)	low ¹
	Moderate				
	412 per 1000	247 per 1000 (214 to			
Length of mechanical ventilation	The mean length of the intervention gr <i>lower to 0.61 lower</i>)	mechanical ventilation in roups was 3.16 lower (5.71		264 (4 studies)	$\oplus \oplus \Theta \Theta$ low ¹
Length of stay on ICU	The mean length of tion groups was 0 2.80 higher)	stay on ICU in the interven- 38 higher (3.55 lower to		530 (8 studies)	$\oplus \Theta \Theta \Theta$ very low ¹

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Low in

⁶² For adults with sepsis or septic shock we suggest against using intravenous immunoglobulins

Clinical Trial > Intensive Care Med. 2018 Apr;44(4):438-448. doi: 10.1007/s00134-018-5143-7. Epub 2018 Apr 9.

Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study)

Purpose: The CIGMA study investigated a novel human polyclonal intibody preparation (trimodulin) containing ~ 23% immunoglobulin (Ig) M, ~ 21% IgA, and ~ 50% IgG as add-on therapy for patients with severe community-acquired pneumonia (sCAP).

Results: Overall, there was no statistically significant difference in VFDs between trimodulin (mean 11.0, median 11 [n = 81]) and placebo (mean 9.6; median 8 [n = 79]; p = 0.173). Twenty-eight-day all-cause mortality was 22.2% vs. 27.8%, respectively (p = 0.465). Time to discharge from intensive care unit and mean duration of hospitalization were comparable between groups. Adverse-event incidences were comparable. Post hoc subset analyses, which included the majority of patients (58-78%), showed significant reductions in all-cause mortality (trimodulin vs. placebo) in patients with high CRP, low IgM, and high CRP/low IgM at baseline.

Vasopressors in septic shock: which, when, and how much?

Rui Shi^{1,2}, Olfa Hamzaoui³, Nello De Vita^{1,2}, Xavier Monnet^{1,2}, Jean-Louis Teboul^{1,2}

....

....................

.....

.....

00000

00000 0000 0 00

When to use vasopressors? The earlier, the better

Major side-effects Receptors Major effects Agents Norepinephrine ↑ venous and arterial tone Cardiac arrhythmia α_1, β_1 \uparrow preload, \uparrow contractility Peripheral ischemia Inadvertent immunomodulation ↑ contractility, ↑ preload Epinephrine $\alpha_1, \beta_1, \beta_2$ Tachycardia, tachyarrhythmia ↑ venous and arterial tone Peripheral ischemia Splanchnic ischemia ↑ heart rate Increased myocardial oxygen consumption lactic acidosis, hyperglycemia Tachycardia, tachyarrhythmia Dopamine α_1, β_1 \uparrow contractility, \uparrow heart rate $D_1 D_2$ ↑ venous and arterial tone ↑ renal and mesenteric vasodilation Angiotensin II ATR_1, ATR_2 ↑ venous and arterial tone Tachycardia ↑ ACTH, ADH, aldosterone (reabsorption) Peripheral ischemia Thromboembolic events ↑ venous and arterial tone, platelet aggregation Vasopressin V1, Peripheral ischemia V2 ↑ water retention, release of coagulation factors Mesenteric ischemia $V1_{b}$ ↑ corticotropic axis stimulation, insulin secretion Cardiac arrhythmia $V1_{a,b} > V2$ ↑ venous and arterial tone, platelet aggregation Terlipressin Peripheral ischemia ↑ water retention, release of coagulation factors Mesenteric ischemia Cardiac arrhythmia $V1_a$ Selepressin ↑ venous and arterial tone, platelet aggregation Peripheral ischemia ↓ vascular leakage Cardiac arrhythmia

....

0.0

.

00000 00

000

000

00000

.....

0000

0000

00000

00 000

0000

000

Table 1 The major vasopressors and their related effects

....

0.0

0.0

000 0 00000

00000

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

0000000

00000

00000 00000 00

00000 0000 0 00

00000 00

0000000

. . .

...

0 0 00

³⁸ For adults with septic shock on norepinephrine with inadequate mean arterial pressure levels, we **suggest** adding vasopressin instead of escalating the dose of norepinephrine.

...

...........

00 0 00000

. .

......

.....

8 8888 8888

0 00000 00

000

0 00000

....

0000 00 000

000

Recommendations 37. For adults with septic shock, we recommend using norepinephrine as the first-line agent over other vasopressors. Strong recommendation Dopamine. High quality evidence Vasopressin. Moderate-quality evidence Epinephrine. Low-quality evidence Selepressin. Low-quality evidence Angiotensin II. Very low-quality evidence Remark In settings where norepinephrine is not available, epinephrine or dopamine can be used as an alternative, but we encourage efforts to improve the availability of norepinephrine. Special attention should be given to patients at risk for arrhythmias when using dopamine and epinephrine 38. For adults with septic shock on norepinephrine with inadequate MAP levels, we suggest adding vasopressin instead of escalating the dose of norepinephrine Weak recommendation, moderate-quality evidence Remark In our practice, vasopressin is usually started when the dose of norepinephrine is in the range of 0.25-0.5 µg/kg/min 39. For adults with septic shock and inadequate MAP levels despite norepinephrine and vasopressin, we suggest adding epinephrine Weak recommendation, low-quality evidence 40. For adults with septic shock, we suggest against using terlipressin Weak recommendation, low quality of evidence

The latest SSC recommendations suggest adding vasopressin instead of scaling norepinephrine above 0.25-0.5 g/kg/min when it is not possible to reach a MAP \geq 65 mmHg (weak recommendation, moderate quality of evidence)

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

James A. Russell, M.D., Keith R. Walley, M.D., Joel Singer, Ph.D., Anthony C. Gordon, M.B., B.S., M.D., Paul C. Hébert, M.D., D. James Cooper, B.M., B.S., M.D., Cheryl L. Holmes, M.D., Sangeeta Mehta, M.D., John T. Granton, M.D., Michelle M. Storms, B.Sc.N., Deborah J. Cook, M.D., Jeffrey J. Presneill, M.B., B.S., Ph.D., and Dieter Ayers, M.Sc., for the VASST Investigators* Rusell et al, N Engl J Med 2008;358:877-87

Vasopressin low doses 0,01-0,03 u/min

Study of the effects of low-dose vasopressin as a catecholamine saver and not as an assessment of vasopressin in patients with refractory shock unresponsive to catecholamines.

Conclusions

Stratum	Norepinephrine Group	Vasopressin Group	P Value†	Absolute Risk Reduction (95% CI)	Relative Risk (95% CI)
	no. /total no. (%)			%	
More severe septic shock					
28-day mortality	85/200 (42.5)	88/200 (44.0)	0.76	-1.5 (-11.2 to 8.2)	1.04 (0.83 to 1.3)
90-day mortality	105/199 (52.8)	103/199 (51.8)	0.84	1.0 (-8.8 to 10.8)	0.98 (0.81 to 1.18)
Less severe septic shock					
28-day mortality	65/182 (35.7)	52/196 (26.5)	0.05	9.2 (-0.1 to 18.5)	0.74 (0.55 to 1.01)
90-day mortality	83/180 (46.1)	69/193 (35.8)	0.04	10.4 (0.4 to 20.3)	0.78 (0.61 to 0.99)

* Patients with more severe septic shock were defined as those who required at least 15 μ g of norepinephrine per minute or the equivalent at the time of randomization. Those with less severe septic shock were defined as those who required 5 to 14 μ g of norepinephrine per minute or the equivalent at the time of randomization.

† Two-sided P values are based on Pearson's chi-square test.

No overall difference in 28 or 90 d mortality

Low dose vasopressin infusíon allowed a rapid decrease in NE dose

Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock The VANISH Randomized Clinical Trial

.....

00 0000 00

00000

00000

0000 0 00

0.0

(B)

............

0.0

00000

0000

000

000

0.0

.

0000

00000

0.0

00000

.....

0000

	Vasopressin			Norepinephrine			Vasopressin vs Norepinephrine, Absolute Difference	
	Hydrocortisone ^a	Placebo	Total ^a	Hydrocortisone	Placebo	Total	(95% CI) ^b	
28-d Survivors who never developed kidney failure, No./total (%) ^c	46/81 (56.8)	48/84 (57.1)	94/165 (57.0)	46/77 (59.7)	47/80 (58.8)	93/157 (59.2)	-2.3 (-13.0 to 8.5) ^d	
Kidney failure-free days in other patients, median (IQR), d ^e	5 (0-23)	12 (1-25)	9 (1-24)	13 (0-25)	14 (1-24)	13 (1-25)	-4 (-11 to 5) ^d	
28-d Mortality, No./total (%)	33/100 (33.0)	30/104 (28.8)	63/204 (30.9)	29/101 (28.7)	27/103 (26.2)	56/204 (27.5)	3.4 (-5.4 to 12.3)	
ICU mortality, No./total (%)	32/100 (32.0)	26/104 (25.0)	58/204 (28.4)	24/101 (23.8)	27/103 (26.2)	51/204 (25.0)	3.4 (-5.2 to 12.0)	
Hospital mortality, No./total (%)	35/100 (35.0)	33/104 (31.7)	68/204 (33.3)	31/101 (30.7)	29/103 (28.2)	60/204 (29.4)	3.9 (-5.1 to 12.9)	
Kidney failure, No./total (%)	41/101 (40.6)	46/104 (44.2)	87/205 (42.4)	46/101 (45.5)	51/103 (49.5)	97/204 (47.5)	-5.1 (-15.2 to 5.0)	
Survivors	21/67 (31.3)	26/74 (35.1)	47/141 (33.3)	26/72 (36.1)	29/76 (38.2)	55/148 (37.2)	-3.8 (-15.5 to 7.9)	
Nonsurvivors	20/33 (60.6)	20/30 (66.7)	40/63 (63.5)	20/29 (69)	22/27 (81.5)	42/56 (75)	-11.5 (-29.6 to 6.6)	
Duration of kidney failure, median (IQR), d	4 (1 to 7)	2 (1 to 6)	3 (1 to 7)	3 (2 to 6)	4 (2 to 8)	4 (2 to 8)	-1 (2 to 0)	
Survivors	4 (2 to 7)	3 (2 to 8)	4 (2 to 8)	4 (2 to 8)	4 (3 to 8)	4 (2 to 8)	0 (-3 to 2)	
Nonsurvivors	2 (1 to 7)	2 (1 to 3)	2 (1 to 7)	3 (2 to 5)	2 (1 to 8)	3 (2 to 7)	-1 (-3 to 0)	
Use of RRT, No./total (%)	29/101 (28.7)	23/104 (22.1)	52/205 (25.4)	32/101 (31.7)	40/103 (38.8)	72/204 (35.3)	-9.9 (-19.3 to -0.6)	

Gordon AC et al. JAMA. 2016; 316(5): 509-518

The **NEW ENGLAND** JOURNAL of MEDICINE

ESTABLISHED IN 1812

000 00

.........

.....

1.00

.....

00000

.....

00000 0000 0 00

.......

0 0

00 000 00 0000 00

0 0 00

AUGUST 3, 2017

VOL. 377 NO. 5

Angiotensin II for the Treatment of Vasodilatory Shock

Table 2. Primary and Secondary End Points.*	:			
End Point	Angiotensin II (N=163)	Placebo (N=158)	Odds or Hazard Ratio (95% CI)	P Value
Primary efficacy end point: MAP response at hour 3 — no. (%)†	114 (69.9)	37 (23.4)	Odds ratio, 7.95 (4.76–13.3)	<0.001
Secondary efficacy end points				
Mean change in cardiovascular SOFA score at hour 48†	-1.75±1.77	-1.28±1.65		0.01
Mean change in total SOFA score at hour 48§	1.05±5.50	1.04±5.34		0.49
Additional end points				
Mean change in norepinephrine- equivalent dose from baseline to hour 3¶	-0.03±0.10	0.03±0.23		<0.001
All-cause mortality at day 7 — no. (%)	47 (29)	55 (35)	Hazard ratio, 0.78 (0.53–1.16)	0.22
All-cause mortality at day 28 — no. (%)	75 (46)	85 (54)	Hazard ratio, 0.78 (0.57–1.07)	0.12

....

.

00 0 0 0 00000 00

000

0 00000

000 00 00000 0 0000

....

....

SOC_MIC Societat Catalana de Medicina Intensiva i Crítica

RESEARCH

Open Access

Wieruszewski et al. Critical Care (2023) 27:175 https://doi.org/10.1186/s13054-023-04446-1

Initiating angiotensin II at lower vasopressor doses in vasodilatory shock: an exploratory post-hoc analysis of the ATHOS-3 clinical trial

Table 2 Hemodynamic, Vasopressor, and Exploratory Endpoint Data

	Low-NED (≤0.25 µg/kg/min)		HR (95% CI)	<i>p</i> -value	High-NED (>0.25 μ g/kg/min)		HR (95% CI)	p-value
	Placebo (n = 48)	AT II (n=56)			Placebo (n=110)	AT II (n=107)		
MAP response at hour 3, n (%)	12 (25.0)	44 (78.6)		< 0.001	25 (22.7)	70 (65.4)		< 0.001
MAP change from baseline to hour 3, mmHq	2 (- 1-8)	11 (7–16)		< 0.001	4 (- 1-10)	11 (5–16)		< 0.001

Table 3 Primary and secondary outcomes

00001

Primary outcome, 28-day survival in the Low-NED (\leq 0.25 µg/kg/min) subgroup					
Placebo (n = 48)	AT II (n = 56)	HR (95% CI)	<i>p</i> -value		
48% (33%–61%)	64% (50%–75%)	0.51 (0.27, 0.95)	0.03		

Review > Intensive Care Med. 2016 May;42(5):712-724. doi: 10.1007/s00134-016-4314-7. Epub 2016 Mar 23.

Venovenous extracorporeal membrane oxygenation for acute respiratory failure : A clinical review from an international group of experts

Eddy Fan ¹², Luciano Gattinoni ³, Alain Combes ⁴, Matthieu Schmidt ⁴, Giles Peek ⁵, Dan Brodie ⁶, Thomas Muller ⁷, Andrea Morelli ⁸, V Marco Ranieri ⁸, Antonio Pesenti ³, Laurent Brochard ⁹ ¹⁰, Carol Hodgson ¹¹, Cecile Van Kiersbilck ¹², Antoine Roch ¹³, Michael Quintel ¹⁴, Laurent Papazian ¹³

....

0 0

0 0000 00000

00000 00

000

0 00000

....

0000 00000

0000

0000 00 000

0.0

000

.....

000 00 0000 00

.....

00000

00000 0000 0 00

00000 00

... ..

. .

00 000 0 00000

0 00000

0.0

Multicenter Study > Lancet. 2020 Aug 22;396(10250):545-552. doi: 10.1016/S0140-6736(20)30733-9.

Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study

Nicolas Bréchot ¹, David Hajage ², Antoine Kimmoun ³, Julien Demiselle ⁴, Cara Agerstrand ⁵, Santiago Montero ⁶, Matthieu Schmidt ⁷, Charles-Edouard Luyt ⁷, Guillaume Lebreton ⁸, Guillaume Hékimian ⁹, Erwan Flecher ¹⁰, Elie Zogheib ¹¹, Bruno Levy ³, Arthur S Slutsky ¹², Daniel Brodie ⁵, Pierre Asfar ⁴, Alain Combes ⁷; International ECMO Network

Multicentric retrospective study where patients treated with VA-ECMO had more severe myocardial dysfunction, more severe haemodynamic impairment and more severe organ failure than did controls, with p<0.0001 for each comparison, however survival at 90 days for patients treated with VA-ECMO was significantly higher than for controls (60% vs 25%, risk ratio [RR] for mortality 0.54, 95% CI [0.40–0.70]; p<0.0001).

Venoarterial extracorporeal membrane oxygenation as mechanical circulatory support in adult septic shock: a systematic review and meta-analysis with individual participant data meta-regression analysis

Ryan Ruiyang Ling ^{# 1}, Kollengode Ramanathan ^{# 2 3}, Wynne Hsing Poon ¹, Chuen Seng Tan ⁴, Nicolas Brechot ^{5 6}, Daniel Brodie ⁷, Alain Combes ^{5 8}, Graeme MacLaren ^{1 9}

Systemic review including 14 observational studies with 468 patients that concluded that when treated with VA ECMO, the majority of patients with septic shock and severe sepsis-induced myocardial depression survive. However, VA ECMO has poor outcomes in adults with septic shock without severe left ventricular depression. Pooled survival was 36.4%. Survival among patients with left ventricular ejection fraction (LVEF) < 20% (62.0%, 95%-CI: 51.6%-72.0%) was significantly higher than those with LVEF > 35% (32.1%, 95%-CI: 8.69%-60.7%,

p = 0.05).

Treatment SEPSIS – SEPTIC SHOCK

PERSONALIZED MEDICINE

Rescue Therapies

Conclusions

¡Gracias!

Luis Chiscano Camón

Intensive Care Department, Vall d'Hebron University Hospital, Barcelona

Shock, Organ Dysfunction and Resuscitation Research Group. Vall d'Hebron Research Institute (VHIR)

luissilvestre.chiscano@vallhebron.cat

