

Tractament immunomodulador de la diabetis mellitus tipus 1

Irma Pujol Autonell

Immunobiology Department King's College London Guy's Hospital SE1 9RT London

17th March 2017

Type 1 diabetes is an autoimmune disease

Autoimmune disease characterized by β -cell destruction, resulting in a deficit in insulin secretion.

CD3 (T cells) / GAD (α-,β- cells)

Islet from a T1D patient (onset) From Planas *et al.* Clin Exp Immunol, 2010

- No cure or prevention
- Lifelong insulin therapy
- Secondary complications

From International Textbook of Diabetes Mellitus, 4th Ed

- Increasing incidence
- Peaking in ever-younger age groups
- Limited access to pancreatic tissue

Immunopathogenesis of T1D

From Roep B & Tree T, 2014, Nat Rev Endocrinol

- Unknown etiology: polygenic disease + environmental factors
- Lack of tolerance to β-cells
- Silent β-cell loss (prediabetes)
- Autoantibodies (biomarkers)
- **Clinical onset**
- Inflammation / Regulatory mechanisms
- Regeneration

Immune balance - islet autoreactive T cells are kept in check by immune regulation. Unidentified factors – loss of tolerance and activation of APCs and autoreactive T cells.

Activation of B cells (islet autoantibodies) and effector T cells (kill β -cells), and recruitment of inflammatory cells in the islets. Declining functional β -cell mass and impaired glucose response.

Immune regulation is outweighed by islet autoreactivity: clinical manifestation of T1D and hyperglycaemia.

T1D as a relapsing-remitting disease

From Somoza N et al, J Immunol 1994

From Planas R et al, Clin Exp Immunol 2010

- **β-cell mass and function is maintained before diagnosis, and declines rapidly at clinical onset** Rodriguez-Calvo T, Diabetes, 2017
- β-cell regeneration in T1D patients Somoza, J Immunol 1994
- Chronicity of AI: β-cell function and ongoing autoimmunity in long-standing T1D Planas, Clin Exp Immunol 2010 / Meier, Diabetologia 2005 / Williams GM, 2016, Diabetologia
- **T1D as a relapsing-remitting disease?** von Herrath, Nat Rev immunol 2007

Immunotherapies for T1D

Adapted from Matthews JB, 2010, Clin Exp Immunol

Immunotherapies for T1D – Systemic

Immunotherapies for T1D – Antigen Specific

- **Subcutaneous insulin** in prevention (Vandemeulebroucke *et al*. Diabetes Metab 2009) – No effect!
- Nasal insulin in prevention trials (Nanto-Salonen *et al.* Lancet 2008) (Phase II) Fail!
- Oral insulin in prevention or new-onset T1D (Skyler *et al.* Diabetes Care 2005) Fail!
- * Repeated prevention trial in progress
- GAD-alum in new onset T1D (Phase III) Fail!
 *secondary prevention in progress
- Diapep277 in new onset T1D (Phase III) glucagonstimulated test (GST) (Raz/Pozilli, et al. 2014) – retracted! (Diabetes Care 2015)
- **PI (C19-A3) peptide** (Phase Ia) Safe in long-standing T1D (Thrower et al. Clin Exp Immunol 2008)

From von Herrath, Peakman M & Roep B, 2013, Clin Exp Immunol

Can antigen-based immunotherapies prevent progression of recent onset autoimmune diabetes?

Challenge	Discussion of issues Traditionally, new therapies are trialled in the intervention setting (i.e. at disease onset). Disease reversal using antigen alone at this stage will most probably be difficult. Prevention studies are long duration and expensive;			
Setting for clinical trials				
Dose	Both high- and low-dose immunological tolerance has been described, probably equating to predominantly deletional and regulatory mechanisms; which is better, and whether both effects could be harnessed, is not known, however			
Regime	Frequent (daily) dosing has been the norm until now (e.g. for intranasal and oral insulin), but again this may favour deletion over regulation [27]			
Adjuvants and enhancing combinations	A poorly explored area in general, despite encouraging data in preclinical models (e.g. anti-CD3 plus antigen; see Table 5)			
Agent	It has yet to be determined whether whole antigens or fragments are superior; similarly, whether protein or DNA-based delivery is better; free peptide or complexed to peptide–human leucocyte antigen multimers or nanoparticles			
Route of administration	Parenteral or oral/nasal routes predominate, but the relative advantages of either have not been explored head-to-head			
Staging and stratification	Oral insulin appears effective in the subgroup of patients with high titres of insulin autoantibodies; is this a gen principle for ASI?			
Preclinical models	As a generalization, ASI works well if given early enough in disease models; but trialling the human antigens in <u>humanized models</u> is an under-developed area			
Role of industry and biotech	h Antigens face the dual challenges of being difficult to develop with robust intellectual property and having a clear route to market and have therefore been less favoured for commercial development than biologics and other immune modulators			

Immunotherapies for T1D

AIM: To stop autoimmune reaction in T1D

Imbalances between immune regulation and autoimmunity

Antigen-Specific Immunotherapies for T1D

- Cell-based therapy
- Liposome-based therapy
- Peptide immunotherapy

First approach: Dendritic cell-based immunotherapy

S. Marín-Gallén, et al., Clin Exp Immunol, 2010

From dendritic cells to liposomes

Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients

Giannoukakis et al. Diabetes Care 2011

Adapted from Dobrovolskaia M, 2007, Nat Nanotechnol

Phosphatidylserine-containing liposomes

	Particle size (nm)	Polydispersity index (PdI)	Zeta potential (mV)	Encapsulation efficiency (%)
PS-liposomes	996.71 ± 89.42	0.31 ± 0.05	-29.26 ± 2.82	-
PSA-liposomes	1051.43 ± 45.15	0.31 ± 0.06	-30.79 ± 2.35	41.07 ± 23.58
PSB-liposomes	968.57 ± 86.32	0.27 ± 0.08	-29.44 ± 1.48	87.44 ± 4.54

Data are expressed as mean ± SD.

I. Pujol-Autonell, et al., PLOS ONE, 2015

Nanotecnologia

PS-liposomes display MVV (multivesicular vesicles) morphology.

European patent filed

Autoantigen-loaded PS-liposomes prevent T1D

PS-liposomes induce toIDCs

Autoantigen-loaded PS-liposomes arrest autoimmunity in T1D

DCs can be programmed to induce specific **immune tolerance** using **nanovesicles** mimicking apoptotic bodies from β -cells (phosphatidylserine-liposomes loaded with insulin peptides) resulting in the re-education of autoreactive T cells and the arrest of the autoimmune aggression.

These liposomes can offer a solution to the complexity of cell-based therapies with many benefits, such as being low-cost and easy to standardize, large-scale production and customization.

- Tolerogenic potential validated in another AI disease (induced MS in mice) (Pujol-Autonell I *et al*. Nanomedicine, 2017, *under review*)
- Validation in human cells *in vitro* in progress

Clinical & Experimental Immunology Immunology The Journal of Translational Immunology ORIGINAL ARTICLE Clinical and Experimental Immunology ORIGINAL ARTICLE

Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man Phase I safety study

Safety and **mechanistic** outcomes during **first-in-man intradermal** administration of a human leucocyte antigen-DR4 (HLA-DR4)-restricted peptide epitope of **proinsulin (C19-A3)** in patients with **long-standing T1D**.

Systemic hypersensitivity Ag-specific proinflammatory response Antigen-specific IL-10 response in low dose group S. L. Thrower,* L. James,[†] W. Hall,[†] K. M. Green,[‡] S. Arif,[†] J. S. Allen,[†] C. Van-Krinks,[†] B. Lozanoska-Ochser,[†] L. Marquesini,* S. Brown,[§] F. S. Wong,[§] C. M. Dayan* and M. Peakman[†]

Helper T cells responding to islets

MonoPepT1De (2012 - 2015)

Safety study to assess whether proinsulin peptide injections can slow or stop the body damaging its own insulin-making cells in the pancreas in patients newly diagnosed with T1D.

MultiPepT1De (2015 – 2017)

Safety and tolerability study of the administration of multiple islet peptide administration in patients with type 1 diabetes.

Peptide Immunotherapy

- Intradermal proinsulin-peptide injection controls autoimmunity in association with enhanced proliferation of regulatory FoxP3⁺CD25^{high}CD4 T cells.

- The success of multi-peptide immunotherapy depends upon the number of peptides used and frequency of dosing

Peptide Immunotherapy – Immunological Biomarkers

Is the therapy safe or is there a risk of adverse events?

Is there a noticeable effect of the drug on the immune system?

Does the effect represent immunological efficacy?

Does this reflect therapeutic efficacy?

UTILIZING IMMUNE RESPONSES AS DISEASE BIOMARKERS

Characterizing the autoreactive T cells

- **Regulatory phenotype in autoreactive T cell responses in health** (Arif *et al.*, 2004)
- IL-17 signature in T1D, with promotes β-cell death (Arif *et al.*, 2011)
- Immunological heterogeneity in T1D (Arif *et al.*, 2014)

More Ag-experienced in T1D (Skowera et al., 2015)

- Stronger pro-inflammatory bias in the young (Arif et al., 2017)

DISEASE HETEROGENEITY

* Rituximab - greater response in children/adolescents (Pescovitz *et a*l. N Engl J Med 2009)
* Abatacept - appeared to worsen clinical outcome in African American subjects (Orban T *et al.* Lancet 2011)

* Teplizumab (Phase II) - metabolic and immunologic features at baseline identify a subgroup of responders (Herold *et al*. Diabetes 2013)

- Better patient stratification for given treatment (include immunological parameters?)
- Need for immunological biomarkers (possible study end-points?)
- Combination with β-cell regeneration?

From Roep B & Tree T, 2014, Nat Rev Endocrinol

Immunology of T1D/ IGTP

Rosa M. Ampudia Silvia Rodríguez-Fernández David Perna Mireia Fonolleda Marta Vives-Pi

Multiple Sclerosis/ IGTP

Maria Jose-Mansilla Eva Martinez-Caceres

Endocrinology and Nutrition/ HGTP

Eva Aguilera Anna M. Lucas Manel Puig-Domingo

Nursing professionals / HGTP

UPIC Federico Vazquez

Lleida University

Joan Verdaguer

Catalan Institute of Nanoscience

and Nanotechnology (ICN2)

Thank you!

Mary Cano-Sarabia

Daniel Maspoch

"FEDER: Otra manera de hacer Europa"

Peakman's Lab / KCL

Lorraine Yeo Martin Fichmann Iria Gómez-Tourino Katrina Todd Sefina Arif Funliu Johan Verhagen Laura McLaughlin Yogesh Kamra **Roman Baptista** Scott Tasker Lilian Williams Khairin Yusuf **James Harbige Emily Whetttlock Mark Peakman**

RESEARCH & INNOVATION Marie Skłodowska-Curie actions